Хотя Ethernet на 1 Гбит/с и не использовал все свои возможности, реализован уже 10Гбитный Ethernet (IEEE 802.3ae, 10GBase-LW или 10GBase-ER). Этот стандарт утвержден в июне 2002 года и в случае использования для построения региональных каналов соответствует спецификациям OC-192c/SDH VC-4-46c (WAN). Опробован канал длиной 200 км с 10 сегментами. Существует серийное сетевое оборудование обеспечивающее надежную передачу на скорости 10Гбит/с при длине одномодового кабеля 10 км ( l=1310 nm). Эти данные взяты из журнала "LANline" (www.lanline.de) N7, Juli 2002. При работе с оптическими волокнами могут применяться лазеры с вертикальными резонаторами и поверхностным излучением VCSEL (Vertical Cavity Surface Emitting Laser). В случае мультимодовых вариантов используются волокна с градиентом коэффициента преломления. В протоколе 10Гбит/c Ethernet предусмотрен интерфейс chip-to-chip (802.3ae-XAUI - буквы ае означают здесь Ethernet Alliance - ). Такие каналы могут использоваться и в LAN для соединения переключателей сетевых кластеров. Соединение организуется по схеме точка-точка. Эта технология удобна для использования в фермах ЭВМ. Стандартизованы порты: 10Gbase-LR (до 10 км по одномодовому волокну - для высокопроизводительных магистральных и корпоративных каналов), 10Gbase-ER (до 40 км по одномодовому волокну), 10Gbase-SR (до 28 м по мультимодовому волокну - для соединений переключателей друг с другом), а также 10Gbase-LХ4 (до 300 м по мультимодовому волокну стандарта FDDI - для сетей в пределах одного здания). Обсуждается возможность построения 100Гбит/c Ethernet. В 10Gbase для локальных сетей применяется кодирование 64В/66B (вместо 8В/10B, используемого в обычном гигабитном Ethernet), так как старая схема дает 25% увеличение паразитного трафика. Следует обратить внимание, что такое решение делает непригодными существующие оптоволоконные технологии SDH/SONET. К концу 2002 года технология 10Гбит-Ethernet вторглась в область региональных (MAN; смотри и EFM Task Force) и даже межрегиональных (WAN) сетей, тесня SDH, Fibre Channel, OC-192, PCI Express и InfiniBand.
В версии 10Gbase-X4 используется кодирование 8В/10B. Там формируется 4 потока по 3,125Гбит/с, которые передаются по одному волокну (1310нм) с привлечением техники мультиплексирования длин волн (WWDM). В случае 10Gbase-W на уровне МАС вводится большая минимальная длина IPG.
Рис. 4.1.1.2.7. Схема уровней для 10Gbase Ethernet
MDI Medium Dependent Interface
XGMII 10 Gigabit Media Independent Interface
PCS Physical Coding Sublayer
PMA Physical Medium Attachment
PMD Physical Medium Dependent
WIS WAN Interface Sublayer
Таблица 4.1.1.2.5. Классификация категорий оптических волокон для сетевых приложений (данные взяты из журнала "LAN line Special" за июль-август 2002 года; www.lanline.de). Согласно принятым сокращениям буквы в конце обозначения канала (например, 10Gbase-LX) характеризуют оптическое волокно [E - Extended (для WAN или MAN, длина волны 1550нм), L - Long (для расстояний
Представлены значения для волокон с диаметрами 62.5/125 и 50/125 m(MMF). Там, где значения отличаются, в скобках дается величина для 50 мкм.
Приложение в настоящее время промышленностью не поддерживается
Приложение в настоящее время не поддерживается разрабатывавшей его группой
Приложение в стадии разработки
Приложение с ограниченной полосой пропускания для указанных длин канала. Использование для каналов с более высокими требованиями в случае применения компонентов с меньшим ослаблением, не рекомендуется.
Длина канала может быть ограничена для волокон с диаметром 50 мкм.
Длина канала для одномодового волокна может быть больше, но это находится вне пределов регламентаций стандарта.
Таблица 4.1.1.2.6. Максимальные длины каналов с мультимодовыми волокнами
Максимальное ослабление на км (850/130нм): 3.5/1.5 дБ/км; минимальная полоса пропускания для длин волн (850/130нм): 500МГцкм
Максимальное ослабление на км (850/130нм): 3.5/1.5 дБ/км; минимальная полоса пропускания для длин волн (850/130нм): 200МГцкм/500МГцкм
Эти приложения ограничены по полосе. Использование компонентов с меньшим поглощением для получения каналов с улучшенными параметрами, не рекомендуется.
Всякая, даже гигантская сеть была когда-то маленькой. Обычно сеть начинается с одного сегмента типа 1, 3 или 4 (рис. 4.1.1.2.1). Когда ресурсы одного сегмента или концентратора (повторители для скрученных пар) исчерпаны, добавляется повторитель. Так продолжается до тех пор, пока ресурсы удлинения сегментов и каналы концентраторов закончатся и будет достигнуто предельное число повторителей в сети (4 для 10МГц-ного Ethernet). Если при построении сети длина кабельных сегментов и их качество не контролировалось, возможен и худший сценарий - резкое увеличение числа столкновений или вообще самопроизвольное отключение от сети некоторых ЭВМ. Когда это произошло, администратор сети должен понять, что время дешевого развития сети закончилось - надо думать о приобретении мостов, сетевых переключателей, маршрутизаторов, а возможно и диагностического оборудования. Применение этих устройств может решить и проблему загрузки некоторых сегментов, ведь в пределах одного логического сегмента потоки, создаваемые каждым сервером или обычной ЭВМ, суммируются. Не исключено, что именно в этот момент сетевой администратор заметит, что топология сети неудачна и ее нужно изменить. Чтобы этого не произошло, рекомендуется с самого начала тщательно документировать все элементы (кабельные сегменты, интерфейсы, повторители и пр.). Хорошо, если уже на первом этапе вы хорошо представляете конечную цель и те возможности, которыми располагаете. Бухгалтерская сеть и сеть, ориентированная на выход в Интернет, будут иметь разные структуры. Прокладывая кабели, рекомендуется учитывать, что положение ЭВМ время от времени меняется, и это не должно приводить к изменению длины сегмента или к появлению дополнительных “сросток”. Следует также избегать применения в пределах сегмента кабелей разного типа и разных производителей. Если сеть уже создана, научитесь измерять информационные потоки в сегментах и внешние потоки (если ваша сеть соединена с другими сетями, например с Интернет), это позволит осмысленно намечать пути дальнейшей эволюции сети.
Если возможности позволяют, избегайте использования дешевых сетевых интерфейсов, их параметры часто не отвечают требованиям стандарта. Сетевая архитектура требует немалых знаний и это дело лучше поручить профессионалам.
Когда потоки данных в сети достигают уровня, при котором использование мостов и сетевых переключателей уже недостаточно, можно подумать о внедрении маршрутизаторов или оптоволоконных сегментов сети FDDI или быстрого (100 Мбит/с) Ethernet. Эти субсети будут играть роль магистралей, по которым идет основной поток данных, ответвляясь в нужных местах в субсети, построенные по традиционной технологии (см. раздел FDDI). Сеть FDDI для этих целей предпочтительнее, так как она не страдает от столкновений и у нее не падает пропускная способность при перегрузке. Если в вашей сети имеются серверы общего пользования, их рекомендуется подключить к быстродействующим сегментам и организовать несколько узлов доступа к FDDI-кольцу. Остальные потребители будут соединены с FDDI через эти узлы доступа (мосты/шлюзы). Аналогичную функцию могут выполнять и сегменты быстрого Ethernet (особенно хороши для этого схемы дуплексного обмена, см. выше).
Особую проблему составляют переходы 100 Мбит/с ®10 Мбит/с (рис. 4.1.1.2.8). Дело в том, что на MAC-уровне нет механизмов понижения скорости передачи для согласования возможностей отправителя и приемника. Такие возможности существуют только на IP-уровне (ICMP-congestion, опция quench). Если функцию шлюза исполняет, например, переключатель, то исключить переполнение его буфера невозможно. Такое переполнение неизбежно приведет к потере пакетов, повторным передачам и, как следствие, к потере эффективной пропускной способности канала. Решить проблему может применение в качестве шлюза маршрутизатора (здесь работает ICMP-механизм ”обратного давления”).
Рис. 4.1.1.2.8 Схема переходов 10-100-10 Мбит/с
Если любые 2 или более каналов справа попытаются начать работу с одним из каналов слева, или наоборот, потери пакетов неизбежны. Лучше, когда N<10.Проблема исчезает, когда SW работают на IP-уровне.