Примеры сетевых топологий


Выбор метрики - часть 3


Для других ситуаций должны использоваться аппроксимационные алгоритмы. Выбор между аналитическими ограничениями и методом Монте-Карло является более тонким. Аналитические ограничения зависят от специфики проблемы. Следовательно, как это описано в разделе 4, такие ограничения существуют только для определенных классов задач. Далее, их качество и сопряженное с ним время работы алгоритма может отличаться в зависимости от класса решаемой задачи. Для определенных классов доступные ограничения весьма хороши и могут быть вычислены достаточно быстро. Однако для других классов это не так. Преимущества Монте-Карло заключаются в том, что некоторые подходы Монте-Карло могут быть реализованы потенциально для всех метрик, представляющих интерес, а сам алгоритм Монте-Карло может работать долгий или короткий период времени с соразмерным увеличением или уменьшением уровня точности. Нам следует заметить, что некоторые более продвинутые методы Монте-Карло используют проблемные структуры и, следовательно, не имеют первого преимущества.

Надо учитывать важный момент, связанный с аналитическими ограничениями, разрешены ли неравные вероятности отказов. Некоторые методы расчета ограничений лимитируют оценки надежности полиномиально и как следствие выдают результат только для случаев, когда вероятности всех отказов равны. С другой стороны нужно отметить, что полином надежности выдает информацию во всем диапазоне значений вероятностей отказов.

Следует рассмотреть еще один момент, относящийся к данной проблеме, какую модель использовать, с ориентированным или неориентированным графом. Как было отмечено в разделе 2, модель ориентированного графа является более общей и пригодна для широкого класса мер, она пригодна для моделирования как ориентированных, так и неориентированных проблем, с отказами узлов и без отказов.




Начало  Назад  Вперед



Книжный магазин